Innovative block copolymers for next generation directed self-assembly

Yukio Kawaguchi, Terumasa Kosaka, Toshiyuki Himi, Tetsuo Shimizu, HORIBA STEC, Co., Ltd. (Japan); Yi-Chin WANG, Mikihito Takenaka, Kyoto University. (Japan)

Introduction

- **What is HORIBA?**
 - HORIBA is one of major companies of analytical equipment and flow controller in Japan.
 - **Segment**
 - Automobile, Medical, Environmental, Science, Semiconductor

- **Horiba STEC**
 - HORIBA STEC is the subsidiary company specialized in the semiconductor segment in HORIBA.
 - We have started R&D of advanced technology, and our major target is DSA material.

- **DSA(Directed Self-Assembly)**
 - DSA is next generation lithography technology.

Experiments

Polymerizing method of BCPs

- We polymerize the standard BCP of Mw 30,000 and the various “high-chi” BCPs.

- **High-chi BCPs**
 - A block
 - B block
 - Repulsive force between the variety ingredient → Micro-phase separated structure is formed.
 - Living anionic polymerizing method
 - Precise molecular design possible

- **Precise molecular weight control**
 - We can make various polymers with anionic polymerization.

Results & Discussion

Performance of BCPs

- **High-chi BCP**
 - (A)m-b-(B)n
 - Mw=9,000
 - PDI=1.09
 - m=57/n=43
 - Lamellar
 - hp=7.5nm

- **Cross-sectional SEM image**
 - 7.5nm
 - 200nm
 - 100nm

- **High-chi Standard BCP**
 - Pre-Pattern
 - BCP Coat
 - Pattern
 - By courtesy of NISSAN CHEMICAL INDUSTRIES,LTD.

Conclusion

- Phase separation of 5.5nm hp is successfully measured by SAXS with our original BCP, and micro pattern of 7.5nm hp was observed on the guide pattern.
- Our original materials give impact on DSA patterning, and difficulty of HVM of BCP is overcome by our production technology.

- **Other BCPs**
 - *m* = 9,000
 - Mw/Mn (PDI) = 1.05
 - 10.4nm
 - 7.9nm

Problems and Concept

- 14nm hp is limited with conventional BCP (PS-PMMA).
- Innovative BCPs is needed to form less than 14 nm hp of micro pattern.
- Mass production is difficult for anionic polymerization.

Purposes

- To supply “high-chi” BCPs which micro pattern can be formed.
- Establishment of higher volume production of BCPs using advanced living anionic polymerizing method.